Introduction

Athletes participating in contact sports are exposed to repetitive head impacts (RHI). Evidence suggests a link between RHI and impaired cognitive function in adolescents and young adults but the underlying pathomechanism remains to be elucidated. Diffusion MRI (dMRI) is highly sensitive, but imaging study cohorts investigating RHI are generally small and results are mixed. Here, we used the meta-analytic approach of the ENIGMA consortium to analyze the effect of RHI on white matter microstructure across multiple cohorts.

Methods

Sites processed dMRI locally with a harmonized protocol based on TBSS (tract-based spatial statistics) (http://enigma.usc.edu). Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were calculated and averaged across the ENIGMA-DTI skeleton, and within each of 5 midline, and 19 bilaterally averaged white matter (WM) regions of interest (ROIs) from the Johns Hopkins University (JHU) atlas. RHI/control effect sizes were calculated within each site. Statistical results were then pooled across sites to conduct a meta-analysis on the individual regression parameters, testing for group differences across the WM ROIs corrected for age and sex as well as for multiple comparisons using Bonferroni correction ($p<0.05/25 = 0.002$).

Results

FA:
- significantly lower FA in the RHI group in the superior fronto-occipital fasciculus (Cohen’s $D=-1.13$, $p=0.0009$) and
- borderline lower FA in the uncinate fasciculus

MD:
- borderline higher MD in the posterior thalamic radiation and uncinate fasciculus in the RHI group

RD:
- significantly higher RD in the RHI group in the uncinate fasciculus
- borderline higher RD in the superior fronto-occipital fasciculus

AD:
- significantly higher AD in the RHI group in the corona radiata.

Discussion

This meta-analysis of pre-existing data revealed decreased FA and increased MD across multiple studies based in different countries and including participants from different contact sports with exposure to RHI. Results are in line with previously published reports from single center studies. Decreased FA and increased MD in the white matter suggest, e.g., neurodegenerative and neuroinflammatory processes.

Future Directions

Future work will include a larger sample to further examine the location and extent of WM alterations following RHI and their associations with cognitive function. Further, we will assess the effect of female versus male sex, age, sports played, and amount of exposure to RHI.

Acknowledgments: Authors are supported by grants from the NINDS (U01 NS 093334: Ikk, MES; R01 NS 100952: Ikk, APL), the Veterans Affairs (VA Merit Award I01 RX00928: MES), and the Department of Defense Congressionally Directed Medical Research Programs (W81XWH-08-2-0159: MES, W81XWH-15-1-0412: APL). This research project was also partially supported by LMU Munich’s Institutional Strategy LMUexcellent within the framework of the German Excellence Initiative (Ikk). ELD is supported by a grant from the NINDS (K99 NS096116). ELD, Ni, PK, and PT are also supported by NIH grants to PT: US5 E0020403, R01 EB008432, R01 AG040060, and R01 NS080655. HCEP: Funding for this work was also provided to the HCEP and Dr. Echin by the Ontario Trillium Foundation, The Dave Irwin Foundation for Brain Injury, the Ontario Neurotrauma Foundation, Air Canada, The Ontario Ministry of Health and Long Term Care, The Ontario Ministry of Tourism Culture and Sport and The Ontario Ministry of Education. German Soccer Study: Funding was provided by Else Kroener Fresenius Foundation.

ENIGMA Sports-Related Brain Injury: Framework and Preliminary dMRI Meta-analysis

Inga K. Koerte1,2, Emily L. Dennis3,4, David Kaufmann1,2, Elisabeth Hart1,2, Jeffrey J. Bazarian7, Kian Merchant Borna7, Thomas A. Buckley6, Paul Echlin5, Martha Shenton1,10, Elisabeth A. Wilde1,12, David F. Tate1,13, Paul M. Thompson1,16, Peter Kochunov17, Neda Jahanshad3, Dave Baron18

1Psychiatry Neuroimaging Laboratory (PNL), Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 2Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany; 3Imaging Genetics Center, Stevens: Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA; 4Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA; 5Department of Radiology, Charité Universitätsmedizin, Berlin, Germany; 6Epilepsy Center, Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany; 7Department of Emergency Medicine, University of Rochester, Rochester, NY, USA; 8Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA; 9Elliot Sports Medicine Clinic, Burlington, ON, Canada; 10VA Healthcare System Boston, Brockton, MA, USA; 11Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA; 12Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA; 13Department of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA; 14University of Maryland School of Medicine, Baltimore, MD, USA; 15Western University of Health Sciences, Pomona, CA.

References

• significantly higher AD in the RHI group in the corona radiata.
• borderline higher RD in the superior fronto-occipital fasciculus
• significantly lower FA in the RHI group in the superior fronto-occipital fasciculus (Cohen’s $D=-1.13$, $p=0.0009$) and
• borderline lower FA in the uncinate fasciculus

Figure 2. Group differences in the A. acute, B. post-acute, and C. chronic phases. Cohen’s D statistics are shown across ROIs, with bars indicating 95% CI. # denotes significant effects ($p<0.002$) and * denotes borderline effects ($0.002<p<0.05$).