Oeur, R A; Karton, C; Post, A; Rousseau, P; Hoshizaki, T B; Marshall, S; Brien, S E; Smith, A; Cusimano, M D; Gilchrist, M D
In: Journal of Neurosurgery, vol. 123, no. 2, pp. 415–422, 2015.
Abstract | Links | BibTeX | Tags: accident, Accident reconstruction, accidental injury, Accidents, Adolescent, adult, Article, Biomechanical Phenomena, Biomechanics, brain, brain concussion, brain stem, brain tissue, Cerebellum, clinical article, comparative study, Concussion, controlled study, Female, finite element analysis, Finite element modelling, gray matter, Hematoma, human, Humans, Hybrid iii headform, injury severity, laboratory test, Male, Mechanical, mechanical stress, middle aged, pathology, Pathophysiology, Persistent postconcussive symptoms, PHYSIOLOGY, Post Hoc Analysis, Post-Concussion Syndrome, postconcussion syndrome, priority journal, shear stress, simulation, SPORTS medicine, STATISTICAL significance, Stress, stress strain relationship, Subdural, subdural hematoma, traumatic brain injury, white matter, Young Adult
@article{Oeur2015,
title = {A comparison of head dynamic response and brain tissue stress and strain using accident reconstructions for concussion, concussion with persistent postconcussive symptoms, and subdural hematoma},
author = {Oeur, R A and Karton, C and Post, A and Rousseau, P and Hoshizaki, T B and Marshall, S and Brien, S E and Smith, A and Cusimano, M D and Gilchrist, M D},
doi = {10.3171/2014.10.JNS14440},
year = {2015},
date = {2015-01-01},
journal = {Journal of Neurosurgery},
volume = {123},
number = {2},
pages = {415--422},
abstract = {Object Concussions typically resolve within several days, but in a few cases the symptoms last for a month or longer and are termed persistent postconcussive symptoms (PPCS). These persisting symptoms may also be associated with more serious brain trauma similar to subdural hematoma (SDH). The objective of this study was to investigate the head dynamic and brain tissue responses of injury reconstructions resulting in concussion, PPCS, and SDH. Methods Reconstruction cases were obtained from sports medicine clinics and hospitals. All subjects received a direct blow to the head resulting in symptoms. Those symptoms that resolved in 9 days or fewer were defined as concussions (n = 3). Those with symptoms lasting longer than 18 months were defined as PPCS (n = 3), and 3 patients presented with SDHs (n = 3). A Hybrid III headform was used in reconstruction to obtain linear and rotational accelerations of the head. These dynamic response data were then input into the University College Dublin Brain Trauma Model to calculate maximum principal strain and von Mises stress. A Kruskal-Wallis test followed by Tukey post hoc tests were used to compare head dynamic and brain tissue responses between injury groups. Statistical significance was set at p \< 0.05. Results A significant difference was identified for peak resultant linear and rotational acceleration between injury groups. Post hoc analyses revealed the SDH group had higher linear and rotational acceleration responses (316 g and 23,181 rad/sec2, respectively) than the concussion group (149 g and 8111 rad/sec2, respectively; p \< 0.05). No significant differences were found between groups for either brain tissue measures of maximum principal strain or von Mises stress. Conclusions The reconstruction of accidents resulting in a concussion with transient symptoms (low severity) and SDHs revealed a positive relationship between an increase in head dynamic response and the risk for more serious brain injury. This type of relationship was not found for brain tissue stress and strain results derived by finite element analysis. Future research should be undertaken using a larger sample size to confirm these initial findings. Understanding the relationship between the head dynamic and brain tissue response and the nature of the injury provides important information for developing strategies for injury prevention. © AANS, 2015.},
keywords = {accident, Accident reconstruction, accidental injury, Accidents, Adolescent, adult, Article, Biomechanical Phenomena, Biomechanics, brain, brain concussion, brain stem, brain tissue, Cerebellum, clinical article, comparative study, Concussion, controlled study, Female, finite element analysis, Finite element modelling, gray matter, Hematoma, human, Humans, Hybrid iii headform, injury severity, laboratory test, Male, Mechanical, mechanical stress, middle aged, pathology, Pathophysiology, Persistent postconcussive symptoms, PHYSIOLOGY, Post Hoc Analysis, Post-Concussion Syndrome, postconcussion syndrome, priority journal, shear stress, simulation, SPORTS medicine, STATISTICAL significance, Stress, stress strain relationship, Subdural, subdural hematoma, traumatic brain injury, white matter, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Patton, D A; McIntosh, A S; Kleiven, S
In: Journal of Applied Biomechanics, vol. 31, no. 4, pp. 264–268, 2015.
Abstract | Links | BibTeX | Tags: Article, Biomechanics, brain, Brain Injury, brain region, clinical article, Concussion, corpus callosum, Damage detection, evaluation study, finite element analysis, Finite element head models, Finite element method, Finite element simulations, football, gray matter, Head Injuries, head injury, human, Intra-cranial pressure, intracranial pressure, investigative procedures, Maximum principal strain, mesencephalon, Modeling, Models, Numerical reconstruction, Qualitative observations, Sport, sport injury, Sports, Strain and strain rates, Strain rate, Stress, thalamus, Tissue, tissue level
@article{Patton2015,
title = {The biomechanical determinants of concussion: Finite element simulations to investigate tissue-level predictors of injury during sporting impacts to the unprotected head},
author = {Patton, D A and McIntosh, A S and Kleiven, S},
doi = {10.1123/jab.2014-0223},
year = {2015},
date = {2015-01-01},
journal = {Journal of Applied Biomechanics},
volume = {31},
number = {4},
pages = {264--268},
abstract = {Biomechanical studies of concussions have progressed from qualitative observations of head impacts to physical and numerical reconstructions, direct impact measurements, and finite element analyses. Supplementary to a previous study, which investigated maximum principal strain, the current study used a detailed finite element head model to simulate unhelmeted concussion and no-injury head impacts and evaluate the effectiveness of various tissue-level brain injury predictors: strain rate, product of strain and strain rate, cumulative strain damage measure, von Mises stress, and intracranial pressure. Von Mises stress was found to be the most effective predictor of concussion. It was also found that the thalamus and corpus callosum were brain regions with strong associations with concussion. Tentative tolerance limits for tissue-level predictors were proposed in an attempt to broaden the understanding of unhelmeted concussions. For the thalamus, tolerance limits were proposed for a 50% likelihood of concussion: 2.24 kPa, 24.0 s-1, and 2.49 s-1 for von Mises stress, strain rate, and the product of strain and strain rate, respectively. For the corpus callosum, tolerance limits were proposed for a 50% likelihood of concussion: 3.51 kPa, 25.1 s-1, and 2.76 s-1 for von Mises stress, strain rate, and the product of strain and strain rate, respectively. © 2015 Human Kinetics, Inc.},
keywords = {Article, Biomechanics, brain, Brain Injury, brain region, clinical article, Concussion, corpus callosum, Damage detection, evaluation study, finite element analysis, Finite element head models, Finite element method, Finite element simulations, football, gray matter, Head Injuries, head injury, human, Intra-cranial pressure, intracranial pressure, investigative procedures, Maximum principal strain, mesencephalon, Modeling, Models, Numerical reconstruction, Qualitative observations, Sport, sport injury, Sports, Strain and strain rates, Strain rate, Stress, thalamus, Tissue, tissue level},
pubstate = {published},
tppubtype = {article}
}
McLean, A J
Brain injury without head impact? Journal Article
In: Journal of Neurotrauma, vol. 12, no. 4, pp. 621–625, 1995.
Abstract | BibTeX | Tags: *Brain Injuries/et [Etiology], Acceleration, Accidents, autopsy, Brain Injuries/mo [Mortality], cause of death, Head, Humans, Mechanical, Nonpenetrating, Stress, Traffic, Wounds
@article{McLean1995,
title = {Brain injury without head impact?},
author = {McLean, A J},
year = {1995},
date = {1995-01-01},
journal = {Journal of Neurotrauma},
volume = {12},
number = {4},
pages = {621--625},
abstract = {The proposition that acceleration of the brain without direct impact to the head can result in brain injury is examined by reviewing a series of 414 road users who were fatally injured in the vicinity of Adelaide, South Australia. The series comprises 170 pedestrians, 10 pedal cyclists, 143 motorcyclists, and 91 vehicle occupants. In each case a member of the research team attended the autopsy to look for evidence of impact on the body, particularly to the head or face. The brain was examined by a neuropathologist and the type and pattern of injury was recorded. The circumstances of the crash were investigated, including an examination of the crash site and the vehicles involved and, where relevant, interviews with witnesses. In cases involving a motorcyclist the helmet worn was retrieved by the police and assigned to the research unit for examination. Particular attention was paid to the identification of objects causing injury to the head or face and also to objects impacted by a helmet. Brain injury was recorded as a cause of death in 55% of the 403 cases for which there was a clear classification of cause of death. Brain injury, at any level of severity, was identified by a neuropathologist in 86 percent of the 414 fatally injured road users in the sample, including 24 cases that were examined microscopically. There were no cases in which there was an injury to the brain in the absence of evidence of an impact to the head.},
keywords = {*Brain Injuries/et [Etiology], Acceleration, Accidents, autopsy, Brain Injuries/mo [Mortality], cause of death, Head, Humans, Mechanical, Nonpenetrating, Stress, Traffic, Wounds},
pubstate = {published},
tppubtype = {article}
}
Oeur, R A; Karton, C; Post, A; Rousseau, P; Hoshizaki, T B; Marshall, S; Brien, S E; Smith, A; Cusimano, M D; Gilchrist, M D
In: Journal of Neurosurgery, vol. 123, no. 2, pp. 415–422, 2015.
@article{Oeur2015,
title = {A comparison of head dynamic response and brain tissue stress and strain using accident reconstructions for concussion, concussion with persistent postconcussive symptoms, and subdural hematoma},
author = {Oeur, R A and Karton, C and Post, A and Rousseau, P and Hoshizaki, T B and Marshall, S and Brien, S E and Smith, A and Cusimano, M D and Gilchrist, M D},
doi = {10.3171/2014.10.JNS14440},
year = {2015},
date = {2015-01-01},
journal = {Journal of Neurosurgery},
volume = {123},
number = {2},
pages = {415--422},
abstract = {Object Concussions typically resolve within several days, but in a few cases the symptoms last for a month or longer and are termed persistent postconcussive symptoms (PPCS). These persisting symptoms may also be associated with more serious brain trauma similar to subdural hematoma (SDH). The objective of this study was to investigate the head dynamic and brain tissue responses of injury reconstructions resulting in concussion, PPCS, and SDH. Methods Reconstruction cases were obtained from sports medicine clinics and hospitals. All subjects received a direct blow to the head resulting in symptoms. Those symptoms that resolved in 9 days or fewer were defined as concussions (n = 3). Those with symptoms lasting longer than 18 months were defined as PPCS (n = 3), and 3 patients presented with SDHs (n = 3). A Hybrid III headform was used in reconstruction to obtain linear and rotational accelerations of the head. These dynamic response data were then input into the University College Dublin Brain Trauma Model to calculate maximum principal strain and von Mises stress. A Kruskal-Wallis test followed by Tukey post hoc tests were used to compare head dynamic and brain tissue responses between injury groups. Statistical significance was set at p \< 0.05. Results A significant difference was identified for peak resultant linear and rotational acceleration between injury groups. Post hoc analyses revealed the SDH group had higher linear and rotational acceleration responses (316 g and 23,181 rad/sec2, respectively) than the concussion group (149 g and 8111 rad/sec2, respectively; p \< 0.05). No significant differences were found between groups for either brain tissue measures of maximum principal strain or von Mises stress. Conclusions The reconstruction of accidents resulting in a concussion with transient symptoms (low severity) and SDHs revealed a positive relationship between an increase in head dynamic response and the risk for more serious brain injury. This type of relationship was not found for brain tissue stress and strain results derived by finite element analysis. Future research should be undertaken using a larger sample size to confirm these initial findings. Understanding the relationship between the head dynamic and brain tissue response and the nature of the injury provides important information for developing strategies for injury prevention. © AANS, 2015.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Patton, D A; McIntosh, A S; Kleiven, S
In: Journal of Applied Biomechanics, vol. 31, no. 4, pp. 264–268, 2015.
@article{Patton2015,
title = {The biomechanical determinants of concussion: Finite element simulations to investigate tissue-level predictors of injury during sporting impacts to the unprotected head},
author = {Patton, D A and McIntosh, A S and Kleiven, S},
doi = {10.1123/jab.2014-0223},
year = {2015},
date = {2015-01-01},
journal = {Journal of Applied Biomechanics},
volume = {31},
number = {4},
pages = {264--268},
abstract = {Biomechanical studies of concussions have progressed from qualitative observations of head impacts to physical and numerical reconstructions, direct impact measurements, and finite element analyses. Supplementary to a previous study, which investigated maximum principal strain, the current study used a detailed finite element head model to simulate unhelmeted concussion and no-injury head impacts and evaluate the effectiveness of various tissue-level brain injury predictors: strain rate, product of strain and strain rate, cumulative strain damage measure, von Mises stress, and intracranial pressure. Von Mises stress was found to be the most effective predictor of concussion. It was also found that the thalamus and corpus callosum were brain regions with strong associations with concussion. Tentative tolerance limits for tissue-level predictors were proposed in an attempt to broaden the understanding of unhelmeted concussions. For the thalamus, tolerance limits were proposed for a 50% likelihood of concussion: 2.24 kPa, 24.0 s-1, and 2.49 s-1 for von Mises stress, strain rate, and the product of strain and strain rate, respectively. For the corpus callosum, tolerance limits were proposed for a 50% likelihood of concussion: 3.51 kPa, 25.1 s-1, and 2.76 s-1 for von Mises stress, strain rate, and the product of strain and strain rate, respectively. © 2015 Human Kinetics, Inc.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
McLean, A J
Brain injury without head impact? Journal Article
In: Journal of Neurotrauma, vol. 12, no. 4, pp. 621–625, 1995.
@article{McLean1995,
title = {Brain injury without head impact?},
author = {McLean, A J},
year = {1995},
date = {1995-01-01},
journal = {Journal of Neurotrauma},
volume = {12},
number = {4},
pages = {621--625},
abstract = {The proposition that acceleration of the brain without direct impact to the head can result in brain injury is examined by reviewing a series of 414 road users who were fatally injured in the vicinity of Adelaide, South Australia. The series comprises 170 pedestrians, 10 pedal cyclists, 143 motorcyclists, and 91 vehicle occupants. In each case a member of the research team attended the autopsy to look for evidence of impact on the body, particularly to the head or face. The brain was examined by a neuropathologist and the type and pattern of injury was recorded. The circumstances of the crash were investigated, including an examination of the crash site and the vehicles involved and, where relevant, interviews with witnesses. In cases involving a motorcyclist the helmet worn was retrieved by the police and assigned to the research unit for examination. Particular attention was paid to the identification of objects causing injury to the head or face and also to objects impacted by a helmet. Brain injury was recorded as a cause of death in 55% of the 403 cases for which there was a clear classification of cause of death. Brain injury, at any level of severity, was identified by a neuropathologist in 86 percent of the 414 fatally injured road users in the sample, including 24 cases that were examined microscopically. There were no cases in which there was an injury to the brain in the absence of evidence of an impact to the head.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Oeur, R A; Karton, C; Post, A; Rousseau, P; Hoshizaki, T B; Marshall, S; Brien, S E; Smith, A; Cusimano, M D; Gilchrist, M D
In: Journal of Neurosurgery, vol. 123, no. 2, pp. 415–422, 2015.
Abstract | Links | BibTeX | Tags: accident, Accident reconstruction, accidental injury, Accidents, Adolescent, adult, Article, Biomechanical Phenomena, Biomechanics, brain, brain concussion, brain stem, brain tissue, Cerebellum, clinical article, comparative study, Concussion, controlled study, Female, finite element analysis, Finite element modelling, gray matter, Hematoma, human, Humans, Hybrid iii headform, injury severity, laboratory test, Male, Mechanical, mechanical stress, middle aged, pathology, Pathophysiology, Persistent postconcussive symptoms, PHYSIOLOGY, Post Hoc Analysis, Post-Concussion Syndrome, postconcussion syndrome, priority journal, shear stress, simulation, SPORTS medicine, STATISTICAL significance, Stress, stress strain relationship, Subdural, subdural hematoma, traumatic brain injury, white matter, Young Adult
@article{Oeur2015,
title = {A comparison of head dynamic response and brain tissue stress and strain using accident reconstructions for concussion, concussion with persistent postconcussive symptoms, and subdural hematoma},
author = {Oeur, R A and Karton, C and Post, A and Rousseau, P and Hoshizaki, T B and Marshall, S and Brien, S E and Smith, A and Cusimano, M D and Gilchrist, M D},
doi = {10.3171/2014.10.JNS14440},
year = {2015},
date = {2015-01-01},
journal = {Journal of Neurosurgery},
volume = {123},
number = {2},
pages = {415--422},
abstract = {Object Concussions typically resolve within several days, but in a few cases the symptoms last for a month or longer and are termed persistent postconcussive symptoms (PPCS). These persisting symptoms may also be associated with more serious brain trauma similar to subdural hematoma (SDH). The objective of this study was to investigate the head dynamic and brain tissue responses of injury reconstructions resulting in concussion, PPCS, and SDH. Methods Reconstruction cases were obtained from sports medicine clinics and hospitals. All subjects received a direct blow to the head resulting in symptoms. Those symptoms that resolved in 9 days or fewer were defined as concussions (n = 3). Those with symptoms lasting longer than 18 months were defined as PPCS (n = 3), and 3 patients presented with SDHs (n = 3). A Hybrid III headform was used in reconstruction to obtain linear and rotational accelerations of the head. These dynamic response data were then input into the University College Dublin Brain Trauma Model to calculate maximum principal strain and von Mises stress. A Kruskal-Wallis test followed by Tukey post hoc tests were used to compare head dynamic and brain tissue responses between injury groups. Statistical significance was set at p \< 0.05. Results A significant difference was identified for peak resultant linear and rotational acceleration between injury groups. Post hoc analyses revealed the SDH group had higher linear and rotational acceleration responses (316 g and 23,181 rad/sec2, respectively) than the concussion group (149 g and 8111 rad/sec2, respectively; p \< 0.05). No significant differences were found between groups for either brain tissue measures of maximum principal strain or von Mises stress. Conclusions The reconstruction of accidents resulting in a concussion with transient symptoms (low severity) and SDHs revealed a positive relationship between an increase in head dynamic response and the risk for more serious brain injury. This type of relationship was not found for brain tissue stress and strain results derived by finite element analysis. Future research should be undertaken using a larger sample size to confirm these initial findings. Understanding the relationship between the head dynamic and brain tissue response and the nature of the injury provides important information for developing strategies for injury prevention. © AANS, 2015.},
keywords = {accident, Accident reconstruction, accidental injury, Accidents, Adolescent, adult, Article, Biomechanical Phenomena, Biomechanics, brain, brain concussion, brain stem, brain tissue, Cerebellum, clinical article, comparative study, Concussion, controlled study, Female, finite element analysis, Finite element modelling, gray matter, Hematoma, human, Humans, Hybrid iii headform, injury severity, laboratory test, Male, Mechanical, mechanical stress, middle aged, pathology, Pathophysiology, Persistent postconcussive symptoms, PHYSIOLOGY, Post Hoc Analysis, Post-Concussion Syndrome, postconcussion syndrome, priority journal, shear stress, simulation, SPORTS medicine, STATISTICAL significance, Stress, stress strain relationship, Subdural, subdural hematoma, traumatic brain injury, white matter, Young Adult},
pubstate = {published},
tppubtype = {article}
}
Patton, D A; McIntosh, A S; Kleiven, S
In: Journal of Applied Biomechanics, vol. 31, no. 4, pp. 264–268, 2015.
Abstract | Links | BibTeX | Tags: Article, Biomechanics, brain, Brain Injury, brain region, clinical article, Concussion, corpus callosum, Damage detection, evaluation study, finite element analysis, Finite element head models, Finite element method, Finite element simulations, football, gray matter, Head Injuries, head injury, human, Intra-cranial pressure, intracranial pressure, investigative procedures, Maximum principal strain, mesencephalon, Modeling, Models, Numerical reconstruction, Qualitative observations, Sport, sport injury, Sports, Strain and strain rates, Strain rate, Stress, thalamus, Tissue, tissue level
@article{Patton2015,
title = {The biomechanical determinants of concussion: Finite element simulations to investigate tissue-level predictors of injury during sporting impacts to the unprotected head},
author = {Patton, D A and McIntosh, A S and Kleiven, S},
doi = {10.1123/jab.2014-0223},
year = {2015},
date = {2015-01-01},
journal = {Journal of Applied Biomechanics},
volume = {31},
number = {4},
pages = {264--268},
abstract = {Biomechanical studies of concussions have progressed from qualitative observations of head impacts to physical and numerical reconstructions, direct impact measurements, and finite element analyses. Supplementary to a previous study, which investigated maximum principal strain, the current study used a detailed finite element head model to simulate unhelmeted concussion and no-injury head impacts and evaluate the effectiveness of various tissue-level brain injury predictors: strain rate, product of strain and strain rate, cumulative strain damage measure, von Mises stress, and intracranial pressure. Von Mises stress was found to be the most effective predictor of concussion. It was also found that the thalamus and corpus callosum were brain regions with strong associations with concussion. Tentative tolerance limits for tissue-level predictors were proposed in an attempt to broaden the understanding of unhelmeted concussions. For the thalamus, tolerance limits were proposed for a 50% likelihood of concussion: 2.24 kPa, 24.0 s-1, and 2.49 s-1 for von Mises stress, strain rate, and the product of strain and strain rate, respectively. For the corpus callosum, tolerance limits were proposed for a 50% likelihood of concussion: 3.51 kPa, 25.1 s-1, and 2.76 s-1 for von Mises stress, strain rate, and the product of strain and strain rate, respectively. © 2015 Human Kinetics, Inc.},
keywords = {Article, Biomechanics, brain, Brain Injury, brain region, clinical article, Concussion, corpus callosum, Damage detection, evaluation study, finite element analysis, Finite element head models, Finite element method, Finite element simulations, football, gray matter, Head Injuries, head injury, human, Intra-cranial pressure, intracranial pressure, investigative procedures, Maximum principal strain, mesencephalon, Modeling, Models, Numerical reconstruction, Qualitative observations, Sport, sport injury, Sports, Strain and strain rates, Strain rate, Stress, thalamus, Tissue, tissue level},
pubstate = {published},
tppubtype = {article}
}
McLean, A J
Brain injury without head impact? Journal Article
In: Journal of Neurotrauma, vol. 12, no. 4, pp. 621–625, 1995.
Abstract | BibTeX | Tags: *Brain Injuries/et [Etiology], Acceleration, Accidents, autopsy, Brain Injuries/mo [Mortality], cause of death, Head, Humans, Mechanical, Nonpenetrating, Stress, Traffic, Wounds
@article{McLean1995,
title = {Brain injury without head impact?},
author = {McLean, A J},
year = {1995},
date = {1995-01-01},
journal = {Journal of Neurotrauma},
volume = {12},
number = {4},
pages = {621--625},
abstract = {The proposition that acceleration of the brain without direct impact to the head can result in brain injury is examined by reviewing a series of 414 road users who were fatally injured in the vicinity of Adelaide, South Australia. The series comprises 170 pedestrians, 10 pedal cyclists, 143 motorcyclists, and 91 vehicle occupants. In each case a member of the research team attended the autopsy to look for evidence of impact on the body, particularly to the head or face. The brain was examined by a neuropathologist and the type and pattern of injury was recorded. The circumstances of the crash were investigated, including an examination of the crash site and the vehicles involved and, where relevant, interviews with witnesses. In cases involving a motorcyclist the helmet worn was retrieved by the police and assigned to the research unit for examination. Particular attention was paid to the identification of objects causing injury to the head or face and also to objects impacted by a helmet. Brain injury was recorded as a cause of death in 55% of the 403 cases for which there was a clear classification of cause of death. Brain injury, at any level of severity, was identified by a neuropathologist in 86 percent of the 414 fatally injured road users in the sample, including 24 cases that were examined microscopically. There were no cases in which there was an injury to the brain in the absence of evidence of an impact to the head.},
keywords = {*Brain Injuries/et [Etiology], Acceleration, Accidents, autopsy, Brain Injuries/mo [Mortality], cause of death, Head, Humans, Mechanical, Nonpenetrating, Stress, Traffic, Wounds},
pubstate = {published},
tppubtype = {article}
}