Huang, L; Obenaus, A; Hamer, M; Zhang, J
Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury Journal Article
In: Medical Gas Research, vol. 6, no. 4, pp. 187–193, 2016.
Abstract | Links | BibTeX | Tags: Adolescent, Concussion, diffusion weighted imaging, gliosis, Magnetic Resonance Imaging, rat, susceptibility weighted imaging, T2-weighted imaging
@article{Huang2016a,
title = {Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury},
author = {Huang, L and Obenaus, A and Hamer, M and Zhang, J},
doi = {10.4103/2045-9912.196900},
year = {2016},
date = {2016-01-01},
journal = {Medical Gas Research},
volume = {6},
number = {4},
pages = {187--193},
abstract = {Repetitive mild traumatic brain injury (rmTBI) is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart) were induced in juvenile rats. Hyperbaric oxygen (HBO) was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI). Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI) and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures. © 2016 Medical Gas Research | Published by Wolters Kluwer - Medknow.},
keywords = {Adolescent, Concussion, diffusion weighted imaging, gliosis, Magnetic Resonance Imaging, rat, susceptibility weighted imaging, T2-weighted imaging},
pubstate = {published},
tppubtype = {article}
}
Ojo, J O; Mouzon, B C; Crawford, F
Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men Journal Article
In: Experimental Neurology, vol. 275, pp. 389–404, 2016.
Abstract | Links | BibTeX | Tags: amyloid beta protein, animal, Animal models, Animals, Astroglial tangles, Brain Injury, cell activation, Chronic, complication, Concussion, Craniocerebral Trauma, CTE, diffuse axonal injury, disease duration, disease model, Disease Models, genetic predisposition, gliosis, head injury, hippocampus, human, Humans, lifestyle modification, lithium, metabolism, Mice, microglia, minocycline, mouse, nervous system inflammation, Neurobehaviour, Neurofibrillary tangles, neuropathology, nonhuman, pathogenesis, pathology, priority journal, procedures, protein aggregation, protein analysis, protein blood level, protein cleavage, Repetitive TBI, Review, sex difference, stress activated protein kinase inhibitor, Systematic Review, Tau, tau protein, tau Proteins, Transgenic mice, Translational Medical Research, translational research, traumatic brain injury, trends
@article{Ojo2016,
title = {Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men},
author = {Ojo, J O and Mouzon, B C and Crawford, F},
doi = {10.1016/j.expneurol.2015.06.003},
year = {2016},
date = {2016-01-01},
journal = {Experimental Neurology},
volume = {275},
pages = {389--404},
abstract = {Chronic traumatic encephalopathy (CTE) is a neurological and psychiatric condition marked by preferential perivascular foci of neurofibrillary and glial tangles (composed of hyperphosphorylated-tau proteins) in the depths of the sulci. Recent retrospective case series published over the last decade on athletes and military personnel have added considerably to our clinical and histopathological knowledge of CTE. This has marked a vital turning point in the traumatic brain injury (TBI) field, raising public awareness of the potential long-term effects of mild and moderate repetitive TBI, which has been recognized as one of the major risk factors associated with CTE. Although these human studies have been informative, their retrospective design carries certain inherent limitations that should be cautiously interpreted. In particular, the current overriding issue in the CTE literature remains confusing in regard to appropriate definitions of terminology, variability in individual pathologies and the potential case selection bias in autopsy based studies. There are currently no epidemiological or prospective studies on CTE. Controlled preclinical studies in animals therefore provide an alternative means for specifically interrogating aspects of CTE pathogenesis. In this article, we review the current literature and discuss difficulties and challenges of developing in-vivo TBI experimental paradigms to explore the link between repetitive head trauma and tau-dependent changes. We provide our current opinion list of recommended features to consider for successfully modeling CTE in animals to better understand the pathobiology and develop therapeutics and diagnostics, and critical factors, which might influence outcome. We finally discuss the possible directions of future experimental research in the repetitive TBI/CTE field. © 2015 Elsevier Inc..},
keywords = {amyloid beta protein, animal, Animal models, Animals, Astroglial tangles, Brain Injury, cell activation, Chronic, complication, Concussion, Craniocerebral Trauma, CTE, diffuse axonal injury, disease duration, disease model, Disease Models, genetic predisposition, gliosis, head injury, hippocampus, human, Humans, lifestyle modification, lithium, metabolism, Mice, microglia, minocycline, mouse, nervous system inflammation, Neurobehaviour, Neurofibrillary tangles, neuropathology, nonhuman, pathogenesis, pathology, priority journal, procedures, protein aggregation, protein analysis, protein blood level, protein cleavage, Repetitive TBI, Review, sex difference, stress activated protein kinase inhibitor, Systematic Review, Tau, tau protein, tau Proteins, Transgenic mice, Translational Medical Research, translational research, traumatic brain injury, trends},
pubstate = {published},
tppubtype = {article}
}
Huang, L; Obenaus, A; Hamer, M; Zhang, J
Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury Journal Article
In: Medical Gas Research, vol. 6, no. 4, pp. 187–193, 2016.
@article{Huang2016a,
title = {Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury},
author = {Huang, L and Obenaus, A and Hamer, M and Zhang, J},
doi = {10.4103/2045-9912.196900},
year = {2016},
date = {2016-01-01},
journal = {Medical Gas Research},
volume = {6},
number = {4},
pages = {187--193},
abstract = {Repetitive mild traumatic brain injury (rmTBI) is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart) were induced in juvenile rats. Hyperbaric oxygen (HBO) was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI). Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI) and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures. © 2016 Medical Gas Research | Published by Wolters Kluwer - Medknow.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Ojo, J O; Mouzon, B C; Crawford, F
Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men Journal Article
In: Experimental Neurology, vol. 275, pp. 389–404, 2016.
@article{Ojo2016,
title = {Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men},
author = {Ojo, J O and Mouzon, B C and Crawford, F},
doi = {10.1016/j.expneurol.2015.06.003},
year = {2016},
date = {2016-01-01},
journal = {Experimental Neurology},
volume = {275},
pages = {389--404},
abstract = {Chronic traumatic encephalopathy (CTE) is a neurological and psychiatric condition marked by preferential perivascular foci of neurofibrillary and glial tangles (composed of hyperphosphorylated-tau proteins) in the depths of the sulci. Recent retrospective case series published over the last decade on athletes and military personnel have added considerably to our clinical and histopathological knowledge of CTE. This has marked a vital turning point in the traumatic brain injury (TBI) field, raising public awareness of the potential long-term effects of mild and moderate repetitive TBI, which has been recognized as one of the major risk factors associated with CTE. Although these human studies have been informative, their retrospective design carries certain inherent limitations that should be cautiously interpreted. In particular, the current overriding issue in the CTE literature remains confusing in regard to appropriate definitions of terminology, variability in individual pathologies and the potential case selection bias in autopsy based studies. There are currently no epidemiological or prospective studies on CTE. Controlled preclinical studies in animals therefore provide an alternative means for specifically interrogating aspects of CTE pathogenesis. In this article, we review the current literature and discuss difficulties and challenges of developing in-vivo TBI experimental paradigms to explore the link between repetitive head trauma and tau-dependent changes. We provide our current opinion list of recommended features to consider for successfully modeling CTE in animals to better understand the pathobiology and develop therapeutics and diagnostics, and critical factors, which might influence outcome. We finally discuss the possible directions of future experimental research in the repetitive TBI/CTE field. © 2015 Elsevier Inc..},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Huang, L; Obenaus, A; Hamer, M; Zhang, J
Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury Journal Article
In: Medical Gas Research, vol. 6, no. 4, pp. 187–193, 2016.
Abstract | Links | BibTeX | Tags: Adolescent, Concussion, diffusion weighted imaging, gliosis, Magnetic Resonance Imaging, rat, susceptibility weighted imaging, T2-weighted imaging
@article{Huang2016a,
title = {Neuroprotective effect of hyperbaric oxygen therapy in a juvenile rat model of repetitive mild traumatic brain injury},
author = {Huang, L and Obenaus, A and Hamer, M and Zhang, J},
doi = {10.4103/2045-9912.196900},
year = {2016},
date = {2016-01-01},
journal = {Medical Gas Research},
volume = {6},
number = {4},
pages = {187--193},
abstract = {Repetitive mild traumatic brain injury (rmTBI) is an important medical concern for adolescent athletes that can lead to long-term disabilities. Multiple mild injuries may exacerbate tissue damage resulting in cumulative brain injury and poor functional recovery. In the present study, we investigated the increased brain vulnerability to rmTBI and the effect of hyperbaric oxygen treatment using a juvenile rat model of rmTBI. Two episodes of mild cortical controlled impact (3 days apart) were induced in juvenile rats. Hyperbaric oxygen (HBO) was applied 1 hour/day × 3 days at 2 atmosphere absolute consecutively, starting at 1 day after initial mild traumatic brain injury (mTBI). Neuropathology was assessed by multi-modal magnetic resonance imaging (MRI) and tissue immunohistochemistry. After repetitive mTBI, there were increases in T2-weighted imaging-defined cortical lesions and susceptibility weighted imaging-defined cortical microhemorrhages, correlated with brain tissue gliosis at the site of impact. HBO treatment significantly decreased the MRI-identified abnormalities and tissue histopathology. Our findings suggest that HBO treatment improves the cumulative tissue damage in juvenile brain following rmTBI. Such therapy regimens could be considered in adolescent athletes at the risk of repeated concussions exposures. © 2016 Medical Gas Research | Published by Wolters Kluwer - Medknow.},
keywords = {Adolescent, Concussion, diffusion weighted imaging, gliosis, Magnetic Resonance Imaging, rat, susceptibility weighted imaging, T2-weighted imaging},
pubstate = {published},
tppubtype = {article}
}
Ojo, J O; Mouzon, B C; Crawford, F
Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men Journal Article
In: Experimental Neurology, vol. 275, pp. 389–404, 2016.
Abstract | Links | BibTeX | Tags: amyloid beta protein, animal, Animal models, Animals, Astroglial tangles, Brain Injury, cell activation, Chronic, complication, Concussion, Craniocerebral Trauma, CTE, diffuse axonal injury, disease duration, disease model, Disease Models, genetic predisposition, gliosis, head injury, hippocampus, human, Humans, lifestyle modification, lithium, metabolism, Mice, microglia, minocycline, mouse, nervous system inflammation, Neurobehaviour, Neurofibrillary tangles, neuropathology, nonhuman, pathogenesis, pathology, priority journal, procedures, protein aggregation, protein analysis, protein blood level, protein cleavage, Repetitive TBI, Review, sex difference, stress activated protein kinase inhibitor, Systematic Review, Tau, tau protein, tau Proteins, Transgenic mice, Translational Medical Research, translational research, traumatic brain injury, trends
@article{Ojo2016,
title = {Repetitive head trauma, chronic traumatic encephalopathy and tau: Challenges in translating from mice to men},
author = {Ojo, J O and Mouzon, B C and Crawford, F},
doi = {10.1016/j.expneurol.2015.06.003},
year = {2016},
date = {2016-01-01},
journal = {Experimental Neurology},
volume = {275},
pages = {389--404},
abstract = {Chronic traumatic encephalopathy (CTE) is a neurological and psychiatric condition marked by preferential perivascular foci of neurofibrillary and glial tangles (composed of hyperphosphorylated-tau proteins) in the depths of the sulci. Recent retrospective case series published over the last decade on athletes and military personnel have added considerably to our clinical and histopathological knowledge of CTE. This has marked a vital turning point in the traumatic brain injury (TBI) field, raising public awareness of the potential long-term effects of mild and moderate repetitive TBI, which has been recognized as one of the major risk factors associated with CTE. Although these human studies have been informative, their retrospective design carries certain inherent limitations that should be cautiously interpreted. In particular, the current overriding issue in the CTE literature remains confusing in regard to appropriate definitions of terminology, variability in individual pathologies and the potential case selection bias in autopsy based studies. There are currently no epidemiological or prospective studies on CTE. Controlled preclinical studies in animals therefore provide an alternative means for specifically interrogating aspects of CTE pathogenesis. In this article, we review the current literature and discuss difficulties and challenges of developing in-vivo TBI experimental paradigms to explore the link between repetitive head trauma and tau-dependent changes. We provide our current opinion list of recommended features to consider for successfully modeling CTE in animals to better understand the pathobiology and develop therapeutics and diagnostics, and critical factors, which might influence outcome. We finally discuss the possible directions of future experimental research in the repetitive TBI/CTE field. © 2015 Elsevier Inc..},
keywords = {amyloid beta protein, animal, Animal models, Animals, Astroglial tangles, Brain Injury, cell activation, Chronic, complication, Concussion, Craniocerebral Trauma, CTE, diffuse axonal injury, disease duration, disease model, Disease Models, genetic predisposition, gliosis, head injury, hippocampus, human, Humans, lifestyle modification, lithium, metabolism, Mice, microglia, minocycline, mouse, nervous system inflammation, Neurobehaviour, Neurofibrillary tangles, neuropathology, nonhuman, pathogenesis, pathology, priority journal, procedures, protein aggregation, protein analysis, protein blood level, protein cleavage, Repetitive TBI, Review, sex difference, stress activated protein kinase inhibitor, Systematic Review, Tau, tau protein, tau Proteins, Transgenic mice, Translational Medical Research, translational research, traumatic brain injury, trends},
pubstate = {published},
tppubtype = {article}
}