Ivancic, P C
Neck injury response to direct head impact Journal Article
In: Accident Analysis & Prevention, vol. 50, pp. 323–329, 2013.
Abstract | BibTeX | Tags: *Accidents, *Neck Injuries/et [Etiology], *Neck Injuries/pp [Physiopathology], Acceleration, ANALYSIS of variance, Biomechanical Phenomena, Cadaver, Humans, Manikins, Rotation, Traffic, VIDEO recording
@article{Ivancic2013,
title = {Neck injury response to direct head impact},
author = {Ivancic, P C},
year = {2013},
date = {2013-01-01},
journal = {Accident Analysis \& Prevention},
volume = {50},
pages = {323--329},
abstract = {Previous in vivo studies have observed flexion of the upper or upper/middle cervical spine and extension at inferior spinal levels due to direct head impacts. These studies hypothesized that hyperflexion may contribute to injury of the upper or middle cervical spine during real-life head impact. Our objectives were to determine the cervical spine injury response to direct head impact, document injuries, and compare our results with previously reported in vivo data. Our model consisted of a human cadaver neck (n=6) mounted to the torso of a rear impact dummy and carrying a surrogate head. Rearward force was applied to the model's forehead using a cable and pulley system and free-falling mass of 3.6kg followed by 16.7kg. High-speed digital cameras tracked head, vertebral, and pelvic motions. Average peak spinal rotations observed during impact were statistically compared (P\<0.05) to physiological ranges obtained from intact flexibility tests. Peak head impact force was 249 and 504N for the 3.6 and 16.7kg free-falling masses, respectively. Occipital condyle loads reached 205.3N posterior shear, 331.4N compression, and 7.4Nm extension moment. We observed significant increases in intervertebral extension peaks above physiologic at C6/7 (26.3degree vs. 5.7degree) and C7/T1 (29.7degree vs. 4.6degree) and macroscopic ligamentous and osseous injuries at C6 through T1 due to the 504N impacts. Our results indicate that a rearward head shear force causes complex neck loads of posterior shear, compression, and extension moment sufficient to injure the lower cervical spine. Real-life neck injuries due to motor vehicle crashes, sports impacts, or falls are likely due to combined loads transferred to the neck by direct head impact and torso inertial loads. Copyright © 2012 Elsevier Ltd. All rights reserved.},
keywords = {*Accidents, *Neck Injuries/et [Etiology], *Neck Injuries/pp [Physiopathology], Acceleration, ANALYSIS of variance, Biomechanical Phenomena, Cadaver, Humans, Manikins, Rotation, Traffic, VIDEO recording},
pubstate = {published},
tppubtype = {article}
}
Depreitere, B; Van Lierde, C; Vander Sloten, J; Van der Perre, G; Van Audekercke, R; Plets, C; Goffin, J
Lateral head impacts and protection of the temporal area by bicycle safety helmets Journal Article
In: Journal of Trauma-Injury Infection & Critical Care, vol. 62, no. 6, pp. 1440–1445, 2007.
Abstract | BibTeX | Tags: *Bicycling, *HEAD injuries, *Head Protective Devices, *Skull Fractures, *Temporal Bone/in [Injuries], Athletic Injuries/pc [Prevention & Control], Biomechanical Phenomena, Cadaver, Closed/pc [Prevention & Control], Humans
@article{Depreitere2007,
title = {Lateral head impacts and protection of the temporal area by bicycle safety helmets},
author = {Depreitere, B and {Van Lierde}, C and {Vander Sloten}, J and {Van der Perre}, G and {Van Audekercke}, R and Plets, C and Goffin, J},
year = {2007},
date = {2007-01-01},
journal = {Journal of Trauma-Injury Infection \& Critical Care},
volume = {62},
number = {6},
pages = {1440--1445},
abstract = {BACKGROUND: The protective effectiveness of bicycle helmets has been demonstrated in several epidemiologic studies. However, the temple region is only minimally covered by most helmet models. Impact tests were performed on human cadavers to investigate whether current bicycle helmets are capable of preventing direct contact on the temporal area in side impacts. METHODS: Lateral head impacts, corresponding to a force load of 15,000 N on an nonhelmeted head, were applied on 11 helmeted cadavers by a steel pendulum with a flat impact surface, and the contact between the impactor plate and the temporal and zygomatic area was investigated by means of paint transfer. In eight tests, a common design bicycle helmet was used, whereas in three tests the helmets provided larger temporal coverage (temporal helmet edge \<10 mm above Frankfort plane). The skulls were inspected for fractures. RESULTS: In seven of the eight tests with common design bicycle helmets, contact had occurred and in one of these a skull fracture was seen. The helmets with a larger temporal coverage consistently prevented such contact loading. CONCLUSIONS: The common designs of commercially available bicycle helmets do not prevent direct contact loading on the temporal and zygomatic arch region and this contact loading is potentially harmful. The present preliminary study strongly questions the effectiveness of these helmets in providing accurate protection of the temporal and zygomatic area.},
keywords = {*Bicycling, *HEAD injuries, *Head Protective Devices, *Skull Fractures, *Temporal Bone/in [Injuries], Athletic Injuries/pc [Prevention \& Control], Biomechanical Phenomena, Cadaver, Closed/pc [Prevention \& Control], Humans},
pubstate = {published},
tppubtype = {article}
}
Ivancic, P C
Neck injury response to direct head impact Journal Article
In: Accident Analysis & Prevention, vol. 50, pp. 323–329, 2013.
@article{Ivancic2013,
title = {Neck injury response to direct head impact},
author = {Ivancic, P C},
year = {2013},
date = {2013-01-01},
journal = {Accident Analysis \& Prevention},
volume = {50},
pages = {323--329},
abstract = {Previous in vivo studies have observed flexion of the upper or upper/middle cervical spine and extension at inferior spinal levels due to direct head impacts. These studies hypothesized that hyperflexion may contribute to injury of the upper or middle cervical spine during real-life head impact. Our objectives were to determine the cervical spine injury response to direct head impact, document injuries, and compare our results with previously reported in vivo data. Our model consisted of a human cadaver neck (n=6) mounted to the torso of a rear impact dummy and carrying a surrogate head. Rearward force was applied to the model's forehead using a cable and pulley system and free-falling mass of 3.6kg followed by 16.7kg. High-speed digital cameras tracked head, vertebral, and pelvic motions. Average peak spinal rotations observed during impact were statistically compared (P\<0.05) to physiological ranges obtained from intact flexibility tests. Peak head impact force was 249 and 504N for the 3.6 and 16.7kg free-falling masses, respectively. Occipital condyle loads reached 205.3N posterior shear, 331.4N compression, and 7.4Nm extension moment. We observed significant increases in intervertebral extension peaks above physiologic at C6/7 (26.3degree vs. 5.7degree) and C7/T1 (29.7degree vs. 4.6degree) and macroscopic ligamentous and osseous injuries at C6 through T1 due to the 504N impacts. Our results indicate that a rearward head shear force causes complex neck loads of posterior shear, compression, and extension moment sufficient to injure the lower cervical spine. Real-life neck injuries due to motor vehicle crashes, sports impacts, or falls are likely due to combined loads transferred to the neck by direct head impact and torso inertial loads. Copyright © 2012 Elsevier Ltd. All rights reserved.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Depreitere, B; Van Lierde, C; Vander Sloten, J; Van der Perre, G; Van Audekercke, R; Plets, C; Goffin, J
Lateral head impacts and protection of the temporal area by bicycle safety helmets Journal Article
In: Journal of Trauma-Injury Infection & Critical Care, vol. 62, no. 6, pp. 1440–1445, 2007.
@article{Depreitere2007,
title = {Lateral head impacts and protection of the temporal area by bicycle safety helmets},
author = {Depreitere, B and {Van Lierde}, C and {Vander Sloten}, J and {Van der Perre}, G and {Van Audekercke}, R and Plets, C and Goffin, J},
year = {2007},
date = {2007-01-01},
journal = {Journal of Trauma-Injury Infection \& Critical Care},
volume = {62},
number = {6},
pages = {1440--1445},
abstract = {BACKGROUND: The protective effectiveness of bicycle helmets has been demonstrated in several epidemiologic studies. However, the temple region is only minimally covered by most helmet models. Impact tests were performed on human cadavers to investigate whether current bicycle helmets are capable of preventing direct contact on the temporal area in side impacts. METHODS: Lateral head impacts, corresponding to a force load of 15,000 N on an nonhelmeted head, were applied on 11 helmeted cadavers by a steel pendulum with a flat impact surface, and the contact between the impactor plate and the temporal and zygomatic area was investigated by means of paint transfer. In eight tests, a common design bicycle helmet was used, whereas in three tests the helmets provided larger temporal coverage (temporal helmet edge \<10 mm above Frankfort plane). The skulls were inspected for fractures. RESULTS: In seven of the eight tests with common design bicycle helmets, contact had occurred and in one of these a skull fracture was seen. The helmets with a larger temporal coverage consistently prevented such contact loading. CONCLUSIONS: The common designs of commercially available bicycle helmets do not prevent direct contact loading on the temporal and zygomatic arch region and this contact loading is potentially harmful. The present preliminary study strongly questions the effectiveness of these helmets in providing accurate protection of the temporal and zygomatic area.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Ivancic, P C
Neck injury response to direct head impact Journal Article
In: Accident Analysis & Prevention, vol. 50, pp. 323–329, 2013.
Abstract | BibTeX | Tags: *Accidents, *Neck Injuries/et [Etiology], *Neck Injuries/pp [Physiopathology], Acceleration, ANALYSIS of variance, Biomechanical Phenomena, Cadaver, Humans, Manikins, Rotation, Traffic, VIDEO recording
@article{Ivancic2013,
title = {Neck injury response to direct head impact},
author = {Ivancic, P C},
year = {2013},
date = {2013-01-01},
journal = {Accident Analysis \& Prevention},
volume = {50},
pages = {323--329},
abstract = {Previous in vivo studies have observed flexion of the upper or upper/middle cervical spine and extension at inferior spinal levels due to direct head impacts. These studies hypothesized that hyperflexion may contribute to injury of the upper or middle cervical spine during real-life head impact. Our objectives were to determine the cervical spine injury response to direct head impact, document injuries, and compare our results with previously reported in vivo data. Our model consisted of a human cadaver neck (n=6) mounted to the torso of a rear impact dummy and carrying a surrogate head. Rearward force was applied to the model's forehead using a cable and pulley system and free-falling mass of 3.6kg followed by 16.7kg. High-speed digital cameras tracked head, vertebral, and pelvic motions. Average peak spinal rotations observed during impact were statistically compared (P\<0.05) to physiological ranges obtained from intact flexibility tests. Peak head impact force was 249 and 504N for the 3.6 and 16.7kg free-falling masses, respectively. Occipital condyle loads reached 205.3N posterior shear, 331.4N compression, and 7.4Nm extension moment. We observed significant increases in intervertebral extension peaks above physiologic at C6/7 (26.3degree vs. 5.7degree) and C7/T1 (29.7degree vs. 4.6degree) and macroscopic ligamentous and osseous injuries at C6 through T1 due to the 504N impacts. Our results indicate that a rearward head shear force causes complex neck loads of posterior shear, compression, and extension moment sufficient to injure the lower cervical spine. Real-life neck injuries due to motor vehicle crashes, sports impacts, or falls are likely due to combined loads transferred to the neck by direct head impact and torso inertial loads. Copyright © 2012 Elsevier Ltd. All rights reserved.},
keywords = {*Accidents, *Neck Injuries/et [Etiology], *Neck Injuries/pp [Physiopathology], Acceleration, ANALYSIS of variance, Biomechanical Phenomena, Cadaver, Humans, Manikins, Rotation, Traffic, VIDEO recording},
pubstate = {published},
tppubtype = {article}
}
Depreitere, B; Van Lierde, C; Vander Sloten, J; Van der Perre, G; Van Audekercke, R; Plets, C; Goffin, J
Lateral head impacts and protection of the temporal area by bicycle safety helmets Journal Article
In: Journal of Trauma-Injury Infection & Critical Care, vol. 62, no. 6, pp. 1440–1445, 2007.
Abstract | BibTeX | Tags: *Bicycling, *HEAD injuries, *Head Protective Devices, *Skull Fractures, *Temporal Bone/in [Injuries], Athletic Injuries/pc [Prevention & Control], Biomechanical Phenomena, Cadaver, Closed/pc [Prevention & Control], Humans
@article{Depreitere2007,
title = {Lateral head impacts and protection of the temporal area by bicycle safety helmets},
author = {Depreitere, B and {Van Lierde}, C and {Vander Sloten}, J and {Van der Perre}, G and {Van Audekercke}, R and Plets, C and Goffin, J},
year = {2007},
date = {2007-01-01},
journal = {Journal of Trauma-Injury Infection \& Critical Care},
volume = {62},
number = {6},
pages = {1440--1445},
abstract = {BACKGROUND: The protective effectiveness of bicycle helmets has been demonstrated in several epidemiologic studies. However, the temple region is only minimally covered by most helmet models. Impact tests were performed on human cadavers to investigate whether current bicycle helmets are capable of preventing direct contact on the temporal area in side impacts. METHODS: Lateral head impacts, corresponding to a force load of 15,000 N on an nonhelmeted head, were applied on 11 helmeted cadavers by a steel pendulum with a flat impact surface, and the contact between the impactor plate and the temporal and zygomatic area was investigated by means of paint transfer. In eight tests, a common design bicycle helmet was used, whereas in three tests the helmets provided larger temporal coverage (temporal helmet edge \<10 mm above Frankfort plane). The skulls were inspected for fractures. RESULTS: In seven of the eight tests with common design bicycle helmets, contact had occurred and in one of these a skull fracture was seen. The helmets with a larger temporal coverage consistently prevented such contact loading. CONCLUSIONS: The common designs of commercially available bicycle helmets do not prevent direct contact loading on the temporal and zygomatic arch region and this contact loading is potentially harmful. The present preliminary study strongly questions the effectiveness of these helmets in providing accurate protection of the temporal and zygomatic area.},
keywords = {*Bicycling, *HEAD injuries, *Head Protective Devices, *Skull Fractures, *Temporal Bone/in [Injuries], Athletic Injuries/pc [Prevention \& Control], Biomechanical Phenomena, Cadaver, Closed/pc [Prevention \& Control], Humans},
pubstate = {published},
tppubtype = {article}
}